TYPICALLY REAL MEAN UNIVALENT FUNCTIONS OF LARGE GROWTH

BY B. G. EKE

ABSTRACT

Typically real normalized κ -dimensionally mean univalent functions f on |z| < 1 are considered for which

$$\limsup_{r \uparrow 1} \{(1-r)^2 \max_{0 \le \theta \le 2\pi} |f(re^{i\theta})|\} > 0.$$

Let $s = \log f(z)$ for z in the unit disc cut along (-1,0]. A theorem is proved concerning the area of the Riemann surface over the s-plane which distinguishes the two cases $-1 \le \kappa < +\infty$ and $\kappa = +\infty$.

1. We consider those functions f regular in |z| < 1 which have developments

(1)
$$z + a_2 z^2 + a_3 z^3 + \cdots$$

about z=0. Denote by n(w) the sum of the multiplicities of the zeros of f(z)-w in |z|<1 and by p(t) the integral mean of n(w) around |w|=t. We shall suppose that f is κ -dimensionally mean univalent, i.e. for some $\kappa, -1 \le \kappa \le +\infty$, and all R>0 we have

(2)
$$\int_0^R (p(t) - 1)t^* dt \le 0.$$

The cases $\kappa = +\infty, +1, -1$ correspond to circumferentially (i.e. $p(t) \le 1$ for all t > 0), are ally, logarithmically mean univalent functions, respectively.

The function f is said to be of maximal growth if

$$\alpha = \lim \sup_{r \to 1} \left\{ (1-r)^2 \max_{0 \le \theta \le 2\pi} |f(re^{i\theta})| \right\} > 0.$$

Then, provided $\kappa > -1$, it is known that there is ϕ such that $(1-r)^2 |f(re^{i\phi})| \rightarrow \alpha (r \uparrow 1)$ ([1], Theorem 2). We shall assume throughout that $\phi = 0$.

Received September 22, 1974

Let Σ be the strip $|\tau| < \pi$ in the $s = \sigma + i\tau$ plane and let D be the Riemann surface over the s-plane which is the image of |z| < 1 cut along (-1,0] under $s = \log f(z) = \sigma(z) + i\tau(z)$, the principal branch of the logarithm being taken. (Note: (1), (2) imply that f is non-zero on 0 < |z| < 1.) Suppose \hat{D} is the projection of D onto the s-plane.

THEOREM. Let f be a typically real κ -dimensionally mean univalent function of maximal growth. Then, for fixed κ , the area of $\Sigma \setminus (\Sigma \cap \hat{D})$ is finite for each such function f if and only if $\kappa = +\infty$.

2. In this section we assume $\kappa = +\infty$ and show the area of $\Sigma \setminus (\Sigma \cap \hat{D})$ is finite. Using [2], Lemma 4 we have that

$$\int_{R_0}^{\exp(\sigma(x))} \{Rp(R)\}^{-1} dR + 2\log(1-x)$$

tends to a finite limit as $x \uparrow 1$, where R_0 is a fixed positive number. The hypotheses of [2], Lemma 4 are satisfied, as a discussion analogous to that on [2], p. 153 shows. The maximal growth hypothesis is

$$\sigma(x) + 2\log(1-x) \rightarrow \log \alpha \quad (x \uparrow 1),$$

and so

$$\int_{R_0}^{\exp[\sigma(x)]} \frac{1 - p(R)}{Rp(R)} dR$$

tends to a finite limit as $x \uparrow 1$. Since f is of maximal growth, we know that $\liminf_{R \to \infty} p(R) = 1$ ([2], p. 182), and as $p(R) \le 1$ for all R, we deduce that

$$\int_{R_0}^{\infty} R^{-1}(1-p(R))dR$$

is convergent and this shows that the area of $\Sigma \setminus (\Sigma \cap \hat{D})$ over $\text{Re}(s) > \log R_0$ is finite. By the $\frac{1}{4}$ -Theorem for circumferentially mean univalent functions ([3], Theorem 5.3), we see that $\Sigma \cap \hat{D}$ coincides with Σ in $\text{Re}(s) < -\log 4$. The result follows and shows incidentally that the area of $\hat{D} \setminus (\Sigma \cap \hat{D})$ is also finite.

3. To complete the proof of the theorem we take κ finite and construct a κ -dimensionally mean univalent function of maximal growth for which the area of $\Sigma \setminus (\Sigma \cap \hat{D})$ is infinite. If we write $\theta(\sigma) = 2\pi p(e^{\sigma})$ and $k = \kappa + 1$ in the valency condition (2), we obtain

(2)'
$$\int_{-\infty}^{\log R} (\theta(\sigma) - 2\pi) e^{k\sigma} d\sigma \le 0 \quad (\text{all } R > 0).$$

We will modify the strip Σ by occasional small contractions and expansions of the width. We start with one perturbation of $\partial \Sigma$ and perform the relevant computations. Let $\theta(\sigma)$ be the width of a strip-like domain D which we take to be symmetric about $\tau = 0$. We suppose k > 0 and that ε , h, H are positive. Define θ on $[0, 6\varepsilon]$ by

$$\theta(\sigma) = \begin{cases} 2\pi - 2\sigma h \varepsilon^{-1} & 0 \leq \sigma \leq \varepsilon, \\ 2\pi - 2h & \varepsilon \leq \sigma \leq 2\varepsilon, \\ 2\pi - 2(3\varepsilon - \sigma)h\varepsilon^{-1} & 2\varepsilon \leq \sigma \leq 3\varepsilon, \\ 2\pi + 2(\sigma - 3\varepsilon)H\varepsilon^{-1} & 3\varepsilon \leq \sigma \leq 4\varepsilon, \\ 2\pi + 2H & 4\varepsilon \leq \sigma \leq 5\varepsilon, \\ 2\pi + 2(6\varepsilon - \sigma)H\varepsilon^{-1} & 5\varepsilon \leq \sigma \leq 6\varepsilon. \end{cases}$$

We shall choose $H = H(\varepsilon, h, k)$ so that

(3)
$$\int_0^{6\epsilon} (\theta(\sigma) - 2\pi) e^{k\sigma} d\sigma = 0.$$

Now

$$\int_{3\epsilon}^{6\epsilon} (\theta(\sigma) - 2\pi) e^{k\sigma} d\sigma = 2H\epsilon^{-1} \int_{3\epsilon}^{4\epsilon} (\sigma - 3\epsilon) e^{k\sigma} d\sigma + 2H \int_{4\epsilon}^{5\epsilon} e^{k\sigma} d\sigma$$

$$+ 2H\epsilon^{-1} \int_{5\epsilon}^{6\epsilon} (6\epsilon - \sigma) e^{k\sigma} d\sigma$$

$$= 2H\epsilon^{-1} e^{3k\epsilon} \int_{0}^{\epsilon} \sigma e^{k\sigma} d\sigma + 2He^{3k\epsilon} \int_{\epsilon}^{2\epsilon} e^{k\sigma} d\sigma$$

$$+ 2H\epsilon^{-1} e^{3k\epsilon} \int_{2\epsilon}^{3\epsilon} (3\epsilon - \sigma) e^{k\sigma} d\sigma$$

$$= -h^{-1} He^{3k\epsilon} \int_{0}^{3\epsilon} (\theta(\sigma) - 2\pi) e^{k\sigma} d\sigma.$$

Taking

$$(3)' H = he^{-3k\epsilon},$$

we satisfy (3).

Next we establish

(4)
$$\int_0^{6\epsilon} \frac{1}{\theta(\sigma)} - \frac{1}{2\pi} d\sigma = 3\pi^{-2}hk\varepsilon^2(1 + o(1)),$$

as $\varepsilon, h \downarrow 0$ with $h = o(\varepsilon)$. The contribution to the l.h.s. of (4) from $[0, 3\varepsilon]$ is

$$\frac{1}{2\pi} \int_0^{\epsilon} \left\{ \left(1 - \frac{\sigma h}{\varepsilon \pi} \right)^{-1} - 1 \right\} d\sigma + \frac{1}{2\pi} \int_{\epsilon}^{2\epsilon} \left(1 - \frac{h}{\pi} \right)^{-1} - 1 \right\} d\sigma
+ \frac{1}{2\pi} \int_{2\epsilon}^{3\epsilon} \left\{ \left(1 - \frac{(3\varepsilon - \sigma)h}{\varepsilon \pi} \right)^{-1} - 1 \right\} d\sigma
= \frac{1}{\pi} \int_0^{\epsilon} \left\{ \left(1 - \frac{\sigma h}{\varepsilon \pi} \right)^{-1} - 1 \right\} d\sigma + \frac{\varepsilon h}{2\pi (\pi - h)}.$$

Similarly we obtain the contribution from $[3\varepsilon, 6\varepsilon]$ and so the l.h.s. of (4) is equal to

$$\frac{\varepsilon}{2\pi} \left[\frac{h}{\pi - h} - \frac{H}{\pi + H} \right] + \frac{1}{\pi} \left[\frac{\varepsilon h}{2\pi} + \frac{\varepsilon h^2}{3\pi^2} + o(\varepsilon h^3) - \frac{\varepsilon H}{2\pi} + \frac{\varepsilon H^2}{3\pi^2} + o(\varepsilon H^3) \right]$$

and this leads to (4) after a calculation involving (3)'.

We construct an L-strip D with boundary inclination zero at $\sigma = +\infty$ which is symmetric about $\tau = 0$, i.e., a strip-like domain D with differentiable width $\theta(\sigma)$ for which

$$\frac{\theta(\sigma_2) - \theta(\sigma_1)}{\sigma_2 - \sigma_1} \to 0$$

as $\sigma_1, \sigma_2 \to +\infty$ simultaneously. Take two sequences $\{\varepsilon_n\}_{n=1}^{\infty}, \{h_n\}_{n=1}^{\infty}$ of positive numbers which tend to zero in such a way that

$$(5) h_n \varepsilon_n^{-1} \to 0 (n \to \infty).$$

Let $\{\sigma_n\}_{n=1}^{\infty}$ be a sequence of numbers tending to $+\infty$ for which $\sigma_1 > 0$, $\sigma_{n+1} > \sigma_n + 6\varepsilon_n$ (all n). We define $\theta(\sigma)$ to be equal to 2π if

$$\sigma \not\in \bigcup_{n=1}^{\infty} (\sigma_n, \sigma_n + 6\varepsilon_n).$$

For other values of σ we set

$$\theta(\sigma) = \begin{cases} 2\pi - 2(\sigma - \sigma_n)h_n\varepsilon_n^{-1} & \sigma_n & \leq \sigma \leq \sigma_n + \varepsilon_n, \\ 2\pi - 2h_n & \sigma_n + \varepsilon_n & \leq \sigma \leq \sigma_n + 2\varepsilon_n, \\ 2\pi - 2(\sigma_n + 3\varepsilon_n - \sigma)h_n\varepsilon_n^{-1} & \sigma_n + 2\varepsilon_n & \leq \sigma \leq \sigma_n + 3\varepsilon_n, \\ 2\pi + 2(\sigma - \sigma_n - 3\varepsilon_n)H_n\varepsilon_n^{-1} & \sigma_n + 3\varepsilon_n & \leq \sigma \leq \sigma_n + 4\varepsilon_n, \\ 2\pi + 2H_n & \sigma_n + 4\varepsilon_n & \leq \sigma \leq \sigma_n + 5\varepsilon_n, \\ 2\pi + 2(\sigma_n + 6\varepsilon_n - \sigma)H_n\varepsilon_n^{-1} & \sigma_n + 5\varepsilon_n & \leq \sigma \leq \sigma_n + 6\varepsilon_n, \end{cases}$$
where $H_n = h_n e^{-3k\varepsilon_n}$.

where $H_n = h_n e^{-3k\varepsilon_n}$.

Because of (5), the domain D in the $s = \sigma + i\tau$ plane defined by $|\tau| < \frac{1}{2}\theta(\sigma)$ is an L-strip with boundary inclination zero at $\sigma = +\infty$.

Let g be the function regular in |z| < 1 and having normalization (1)[†] for which the principal branch of $\log g$ maps |z| < 1 cut along (-1,0] onto D so that (0,1) in |z| < 1 is mapped onto $\tau = 0$ in D. Property (3) and the definition of θ ensure that g is a typically real k-dimensionally mean univalent function in |z| < 1. Further, (4) shows that

(6)
$$\int_{0}^{\sigma'} \frac{d\sigma}{\theta(\sigma)} - \int_{0}^{\sigma'} \frac{d\sigma}{2\pi}$$

converges as $\sigma' \to +\infty$, provided (5) holds and also

(7)
$$\sum_{n=1}^{\infty} \varepsilon_n^2 h_n < \infty.$$

An application of Warschawski's first inequality ([4], p. 280) to the map of D onto Σ which takes the positive real axis onto itself yields

(8)
$$\log \frac{x}{(1-x)^2} \le 2\pi \int_{\sigma_0}^{\log g(x)} \frac{d\sigma}{\theta(\sigma)} + \frac{2\pi}{12} \int_{\sigma_0}^{\log g(x)} \frac{(\theta'(\sigma))^2}{\theta(\sigma)} d\sigma + K,$$

where 0 < x < 1, σ_0 is fixed and K is a constant depending on σ_0 and D. If we make

(9)
$$\sum_{n=1}^{\infty} h_{n\varepsilon_{n}}^{2} \epsilon_{n}^{-1} < \infty,$$

then

$$\int_{-\infty}^{\infty} \frac{(\theta'(\sigma))^2}{\theta(\sigma)} d\sigma < \infty,$$

and so (9), (6) when substituted into (8) produce

$$(1-x)^2g(x) > \beta > 0$$

for some constant β independent of x. Thus, if we satisfy (5), (7), (9), g will be a κ -dimensionally mean univalent function in |z| < 1 of maximal growth along arg z = 0.

The area of $\Sigma \setminus (\Sigma \cap D)$ will be infinite if

(10)
$$\sum_{n=1}^{\infty} \varepsilon_n h_n = +\infty.$$

^{&#}x27; To ensure that g'(0) = 1 a horizontal translation of D may be needed. We suppose the sequence $\{\sigma_n\}$ has been suitably modified.

The choice $h_n = \varepsilon_{n}^3$, $\varepsilon_n = n^{-1/4}$ satisfies (5), (7), (9), (10) and completes the construction for $\kappa > -1$. When $\kappa = -1$ any example with $\kappa > -1$ will suffice.

REFERENCES

- 1. James A. Jenkins and Kôtaro Oikawa, A remark on p-valent functions, J. Austral. Math. Soc. 12 (1971), 397-404.
- 2. B. G. Eke, The asymptotic behaviour of a really mean valent functions, J. Analyse Math. 20 (1967), 147-212.
 - 3. W. K. Hayman, Multivalent Functions, Cambridge, 1958.
- 4. S. E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280-335.

DEPARTMENT OF PURE MATHEMATICS
THE UNIVERSITY OF SHEFFIELD
ENGLAND