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T Y P I C A L L Y  REAL M E A N  U N I V A L E N T  
F U N C T I O N S  OF LARGE G R O W T H  

BY 

B . G .  E K E  

ABSTRACT 

T y p i c a l l y  rea l  n o r m a l i z e d  K-d imens iona l l y  m e a n  u n i v a l e n t  f u n c t i o n s  f on  

Iz I < 1 are  c o n s i d e r e d  for  w h i c h  

l im sup{(l  - r )  2 m a x  I f (re")[}  > O. 
�9 I" I O~e~2~ 

L e t  s = log. f (z)  for  z in the  uni t  d i sc  cu t  a long  ( -  1,0]. A t h e o r e m  is p r o v e d  

c o n c e r n i n g  the  a r e a  of  the  R i e m a n n  su r f ace  o v e r  the  s - p l a n e  w h i c h  d is t ing-  

u i shes  the  two  c a s e s  - 1 _-< K < + ~  and  K = +oo. 

1. We consider those functions f regular in [z I < 1 which have develop- 

ments 

(1) z + azz 2 + a3z 3+ . . .  

about z = 0. Denote by n(w) the sum of the multiplicities of the zeros of 

[ ( z ) -  w in [ z [ <  1 and by p(t) the integral mean of n(w) a r o u n d [ w  I= t. We 

shall suppose that f is K-dimensionally mean univalent, i.e. for some K, -  1 =< 
K=< + 2  and a l l R > 0 w e  have 

(2) 
fo~(P(t)- 1)t,dt <_ O. 

The cases K = + 2, + 1, - 1  correspond to circumferentially (i.e. p(t)=< 1 for 

all t > 0), areally, logarithmically mean univalent functions, respectively. 

The function f is said to be of maximal growth if 

l i  m_ t l s u p { ( 1 - r ) 2 m a x l f ( r e " ) [ }  > 0 " 0 - ~ o < 2 ~  G 

Then, provided K > - 1 ,  it is known that there is ~b such that 

(1 - r)2[f(re '*) [ ~  a (r 1' 1) ([1], Theorem 2). We shall assume throughout that 

~ = 0 .  
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Let E be the strip I r ] < ~r in the s = o- + ir plane and let D be the Riemann 

surface over the s-plane which is the image of I z l <  l cut along ( -  1,0] under 

s = I o g f ( z ) =  t r (z)+ iv(z), the principal branch of the logarithm being taken. 

(Note: (1),(2) imply that f is non-zero on 0 < l z ] < l . )  Suppose /) is the 

projection of D onto the s-plane. 

THEOREM. Let f be a typically real K-dimensionally mean univalent function 
of maximal growth. Then, for fixed r, the area of E \ ( E  (7 [)) is finite for each 
such function f if and only if r = + oo. 

2. In this section we assume r -- + or and show the area of Y-,\(E N / ) )  is 

finite. Using [2], Lemma 4 we have that 

fR "~pl'~x~J {Rp (R)}-' dR + 2 log (I - x) 
o 

tends to a finite limit as x 1' l, where Ro is a fixed positive number. The 

hypotheses of [2], Lemma 4 are satisfied, as a discussion analogous to that on 

[2], p. 153 shows. The maximal growth hypothesis is 

and so 

t r ( x ) + 2 1 o g ( I - x ) - - * l o g a  (x l '  1), 

fR ~P~Jj  I - p ( R )  o ~ ( ~  dR 

tends to a finite limit as x 1' 1. Since f is of maximal growth, we know that 

lim inf~ .~p(R)= l ([2], p. 182), and as p(R)<= l for all R, we deduce that 

~ R-'(l  - p(R))dR 

is convergent and this shows that the area of E \ ( E  N / ) )  over Re(s)  > IogRois 

finite. By the ,'--Theorem for circumferentially mean univalent functions ([3], 

Theorem 5.3), we see that ~ N b coincides with E in Re(s)  < - log4. The result 

follows and shows incidentally that the area of / ) \ ( E  N / ) )  is also finite. 

3. To complete the proof of the theorem we take r finite and construct a 

K-dimensionally mean univalent function of maximal growth for which the area 

of E \ ( E  N / ) )  is infinite. If we write 0( t r )=  2rrp(e ~) and k = r + i  in the 

valency condition (2), we obtain 

(2)' f,o,R (O(tr)-21r)ek~do'<--_O (alIR >0) .  



Vol. 22, 1975 MEAN UNIVALENT FUNCTIONS 3 

We will mod i fy  the strip E by occas iona l  small con t rac t ions  and expans ions  

of  the width.  We  start  with one  per turba t ion  of  0 ~  and p e r f o r m  the re levant  

computa t ions .  Le t  0(o") be the width of  a strip-like domain  D which  we take to 

be symmet r i c  abou t  r = 0. We suppose  k > 0 and that  e, h, H are posit ive.  

Define 0 on [0 ,6e]  by 

2rr - 2o.he -t 

2 7 r -  2h 

2rr - 2(3e - o")he -~ 
o ( o " )  = 

2rr + 2(o" - 3e)He  -~ 

2~" + 2 H  

21r + 2(6e - o')He -~ 

We shall choose  H = H ( e , h , k )  so that  

fo r" (3) (0(o.) - 27r)e"~do" = 0. 

N o w  

0 <-O.<~E, 

E :<O. ~ 2 E ,  

2e _-_ o. =<3e, 

3e <=o" -<_4e, 

4e _- o._-< 5e, 

5e _-< o. _-< 6e. 

f31"(O(o.)-27r)e~"do.= 2 H e - ' f ~ i ' ( o . - 3 s ) e k ' d o . + 2 H f S " e k " d o "  

+ 2 H e  ' f ~ i ' ( 6 e - o ' ) e k " d o .  

=2He-~e~k,  f o ' o . ek"do .+2He '~ , f2"ekOdo  . 

= _ h-'He'~,fo3"(O(o.) - 27r)e~"do .. 

Taking 

(3)' 

we sat isfy (3). 

Next  we establish 

(4) f~" 1 
O(o.) 

H = he-~k" 

1 I do" = 3~r-2hke2(1 + o( l ) ) ,  
2r 
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as e, h $ 0 wi th  h = o (e) .  The  c o n t r i b u t i o n  to  the  I.h.s. of  (4) f r o m  [0, 3e ] is 

1 - err, ,  1 (2,  - 2gfo" { (' a"+ L Ill} 
1 3e 

Eh 

2 r r ( ~  - h ) "  

S imi la r ly  we ob ta in  the  c o n t r i b u t i o n  f rom [3e, 6e ]  and  so the  l .h.s,  of  (4) is equa l  

to 

~ Tr-h  Ir+H +--rr ~--~+~-~2+o(eh3) -}--~+-~--~ +o(eH') 

and  this  l eads  to (4) a f t e r  a ca l cu l a t i on  invo lv ing  (3)'. 

W e  c o n s t r u c t  an L-  s t r ip  D with  b o u n d a r y  inc l ina t ion  ze ro  at  cr = + m wh ich  

is s y m m e t r i c  a b o u t  r = 0, i.e., a s t r ip - l ike  d o m a i n  D with  d i f f e ren t i ab le  wid th  

0 (o')  for  which  

0(or2) - 0(or,) ---, 0 
0 -  2 - -  o r  I 

as or,, ~ r2~  + oo s imu l t aneous ly .  T a k e  two  s e q u e n c e s  {e.}7. , ,  {h .} . . ,  o f  pos i t i ve  

n u m b e r s  which  tend  to  ze ro  in such  a w a y  that  

(5) h.e;,' oO (n ---,~). 

L e t  {or.}7=, be a s e q u e n c e  of  n u m b e r s  t end ing  to  + ~  for  which  c r , > O .  

or.+, > or. + 6 e .  (all n) .  W e  def ine  O(cr) to  be  equa l  to 2rr if 

c r~  U . . , ( c r . , o - .  + 6 e . ) .  

F o r  o t h e r  va lues  of  tr we set  

27r - 2 ( r  - r  ~' or. =< o" _-< o'. + e . ,  

2rr - 2h.  o-. + e.  _-- ~r =< o'. + 2e.,  

2 r r -  2(o,. + 3 e .  - c r ) h . e ~ '  ~r. + 2 e .  -<o '=<o ' .  + 3 e . ,  
O(~r) = 

2rr + 2(or - o'. - 3 e . ) H . e  ; '  o'. + 3e.  _--- ~r =< or. + 4 e . ,  

27r + 2H.  or. + 4e .  =< cr _-< ~r. + 5e.,  

2rr+2(cr.+6e.-cr)H.e~. l or. + 5e.  =< cr =< or. + 6e. ,  

w h e r e  /4, = h.e-3~". 
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Because of (5), the domain D in the s = cr + iz plane defined by [71 < �89 0(or) is 

an L-str ip  with boundary inclination zero at cr = + ~. 

Let  g be the function regular in Izl <1 and having normalization (1)' for  

which the principal branch of log g maps I z I < 1 cut along ( - 1,0] onto D so 

that (0, 1) in Iz] < 1 is mapped onto z = 0 in D. Property (3) and the definition of 

0 ensure that g is a typically real k-dimensionally mean univalent function in 

I z I < 1. Further,  (4) shows that 

f "  do" ( "  dot 
(6) o 0(o') Jo 2~r 

converges as c r ' ~  + ~, provided (5) holds and also 

(7) ~ e~h,, < ~. 

An application of Warschawski 's  first inequality ([4], p. 280) to the map of D 

onto E which takes the positive real axis onto itself yields 

x :,o~,~x~ do"  + 2zr f ~ ' ~ '  (0 '( tr)) '  
(8) l ~  J,, o O(tr) --~ ~,,o O(tr) dtr + K, 

where 0 < x < 1, cro is fixed and K is a constant  depending on tro and D. If we 

make 

(9) ~ _, 
h ~ 2., hen ~ 0o, 

n = l  

then 

f | (O'(cr))2do " < 0% 
O(o9 

and so (9), (6) when substituted into (8) produce 

( 1 - x ) ~ g ( x ) > / 3  > 0  

for some constant/3 independent of x. Thus, if we satisfy (5), (7), (9), g will be a 

r-dimensional ly mean univalent function in I z ] <  1 of maximal growth along 

arg z = 0. 

The area of 2 \ ( E  f'l D) will be infinite if 

(1o) 
e~h. = + ~. 

n~l 

' To ensure that g'(0)= 1 a horizontal translation of D may be needed. We suppose the 
sequence {try} has been suitably modified. 
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The choice h .  = e~., e .  = n - ' / '  s a t i s f i e s  (5 ) ,  (7 ) ,  (9 ) ,  ( 10 )  and completes the 

c o n s t r u c t i o n  f o r  K > - 1. W h e n  K = - 1 a n y  e x a m p l e  w i t h  K > -- 1 w i l l  s u f f i c e .  
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