TYPICALLY REAL MEAN UNIVALENT FUNCTIONS OF LARGE GROWTH

BY

B.G. EKE

ABSTRACT

Typically real normalized κ -dimensionally mean univalent functions f on $|z|$ < 1 are considered for which

$$
\limsup_{r\uparrow 1}\{(1-r)^2\max_{0\leq\theta\leq 2\pi}|f(re^{i\theta})|\}>0.
$$

Let $s = \log f(z)$ for z in the unit disc cut along $(-1,0]$. A theorem is proved concerning the area of the Riemann surface over the s-plane which distinguishes the two cases $-1 \le \kappa < +\infty$ and $\kappa = +\infty$.

1. We consider those functions f regular in $|z| < 1$ which have developments

(1)
$$
z + a_2 z^2 + a_3 z^3 + \cdots
$$

about $z = 0$. Denote by $n(w)$ the sum of the multiplicities of the zeros of $f(z) - w$ in $|z| < 1$ and by $p(t)$ the integral mean of $n(w)$ around $|w| = t$. We shall suppose that f is κ -dimensionally mean univalent, i.e. for some κ , $-1 \leq$ $\kappa \leq +\infty$, and all $R>0$ we have

(2)
$$
\int_0^R (p(t)-1)t^* dt \leq 0.
$$

The cases $\kappa = +\infty, +1, -1$ correspond to circumferentially (i.e. $p(t) \le 1$ for all $t > 0$), areally, logarithmically mean univalent functions, respectively.

The function f is said to be of maximal growth if

$$
\alpha=\lim_{r\to 1}\sup_{t\to 0}\left\{(1-r)^2\max_{0\leq\theta\leq 2\pi}|f(re^{i\theta})|\right\}>0.
$$

Then, provided $\kappa > -1$, it is known that there is ϕ such that $(1 - r)^2 |f(re^{i\phi})| \rightarrow \alpha (r \uparrow 1)$ ([1], Theorem 2). We shall assume throughout that $\phi=0.$

Received September 22, 1974

Let Σ be the strip $|\tau| < \pi$ in the $s = \sigma + i\tau$ plane and let D be the Riemann surface over the s-plane which is the image of $|z| < 1$ cut along (-1,0] under $s = \log f(z) = \sigma(z) + i\tau(z)$, the principal branch of the logarithm being taken. (Note: (1), (2) imply that f is non-zero on $0 < |z| < 1$.) Suppose \hat{D} is the projection of D onto the s-plane.

THEOREM. *Let f be a typically real K-dimensionally mean univalent function of maximal growth. Then, for fixed k, the area of* $\Sigma \setminus (\Sigma \cap \hat{D})$ is finite for each *such function f if and only if* $\kappa = +\infty$.

2. In this section we assume $\kappa = +\infty$ and show the area of $\Sigma \setminus (\Sigma \cap \hat{D})$ is finite. Using [2], Lemma 4 we have that

$$
\int_{R_0}^{\exp{\left(\sigma(x)\right)}} \left\{ Rp \left(R \right) \right\}^{-1} dR + 2 \log{(1-x)}
$$

tends to a finite limit as $x \uparrow 1$, where R_0 is a fixed positive number. The hypotheses of [2], Lemma 4 are satisfied, as a discussion analogous to that on [2], p. 153 shows. The maximal growth hypothesis is

$$
\sigma(x) + 2\log(1-x) \rightarrow \log \alpha \quad (x \uparrow 1),
$$

and so

$$
\int_{R_0}^{\exp{\left(\sigma(x)\right)}}\frac{1-p(R)}{Rp(R)}\,dR
$$

tends to a finite limit as $x \uparrow 1$. Since f is of maximal growth, we know that lim inf_R $\cdot P(R) = 1$ ([2], p. 182), and as $p(R) \le 1$ for all R, we deduce that

$$
\int_{R_0}^{\infty} R^{-1}(1-p(R))dR
$$

is convergent and this shows that the area of $\Sigma \setminus (\Sigma \cap \hat{D})$ over $\text{Re}(s) > \log R_0$ is finite. By the $\frac{1}{4}$ -Theorem for circumferentially mean univalent functions ([3], Theorem 5.3), we see that $\Sigma \cap \hat{D}$ coincides with Σ in Re(s) < -1 log4. The result follows and shows incidentally that the area of $\hat{D}\setminus(\Sigma\cap\hat{D})$ is also finite.

3. To complete the proof of the theorem we take κ finite and construct a κ -dimensionally mean univalent function of maximal growth for which the area of $\Sigma \setminus (\Sigma \cap \overline{D})$ is infinite. If we write $\theta(\sigma) = 2\pi p(e^{\sigma})$ and $k = \kappa + 1$ in the valency condition (2), we obtain

(2)'
$$
\int_{-\infty}^{\log R} (\theta(\sigma) - 2\pi) e^{k\sigma} d\sigma \leq 0 \quad (all R > 0).
$$

We will modify the strip Σ by occasional small contractions and expansions of the width. We start with one perturbation of $\partial \Sigma$ and perform the relevant computations. Let $\theta(\sigma)$ be the width of a strip-like domain D which we take to be symmetric about $\tau = 0$. We suppose $k > 0$ and that ε, h, H are positive. Define θ on [0,6 ε] by

$$
\theta(\sigma) = \begin{cases}\n2\pi - 2\sigma h \varepsilon^{-1} & 0 \leq \sigma \leq \varepsilon, \\
2\pi - 2h & \varepsilon \leq \sigma \leq 2\varepsilon, \\
2\pi - 2(3\varepsilon - \sigma) h \varepsilon^{-1} & 2\varepsilon \leq \sigma \leq 3\varepsilon, \\
2\pi + 2(\sigma - 3\varepsilon) H \varepsilon^{-1} & 3\varepsilon \leq \sigma \leq 4\varepsilon, \\
2\pi + 2H & 4\varepsilon \leq \sigma \leq 5\varepsilon, \\
2\pi + 2(6\varepsilon - \sigma) H \varepsilon^{-1} & 5\varepsilon \leq \sigma \leq 6\varepsilon.\n\end{cases}
$$

We shall choose $H = H(\varepsilon, h, k)$ so that

(3)
$$
\int_0^{6\epsilon} (\theta(\sigma) - 2\pi) e^{k\sigma} d\sigma = 0.
$$

Now

$$
\int_{3\epsilon}^{6\epsilon} (\theta(\sigma) - 2\pi) e^{k\sigma} d\sigma = 2He^{-1} \int_{3\epsilon}^{4\epsilon} (\sigma - 3\varepsilon) e^{k\sigma} d\sigma + 2H \int_{4\epsilon}^{5\epsilon} e^{k\sigma} d\sigma
$$

+ 2He^{-1} \int_{5\epsilon}^{6\epsilon} (6\varepsilon - \sigma) e^{k\sigma} d\sigma
= 2He^{-1} e^{3k\epsilon} \int_{0}^{\epsilon} \sigma e^{k\sigma} d\sigma + 2He^{3k\epsilon} \int_{\epsilon}^{2\epsilon} e^{k\sigma} d\sigma
+ 2He^{-1} e^{3k\epsilon} \int_{2\epsilon}^{3\epsilon} (3\varepsilon - \sigma) e^{k\sigma} d\sigma
= -h^{-1}He^{3k\epsilon} \int_{0}^{3\epsilon} (\theta(\sigma) - 2\pi) e^{k\sigma} d\sigma.

Taking

$$
(3)^\prime \hspace{1cm} H = he^{-3k\epsilon},
$$

we satisfy **(3).**

Next we establish

(4)
$$
\int_0^{6\epsilon} \frac{1}{\theta(\sigma)} - \frac{1}{2\pi} d\sigma = 3\pi^{-2} h k \epsilon^2 (1 + o(1)),
$$

as ε , $h \downarrow 0$ with $h = o(\varepsilon)$. The contribution to the l.h.s. of (4) from [0, 3 ε] is

$$
\frac{1}{2\pi} \int_0^{\bullet} \left\{ \left(1 - \frac{\sigma h}{\epsilon \pi} \right)^{-1} - 1 \right\} d\sigma + \frac{1}{2\pi} \int_{\epsilon}^{2\epsilon} \left(1 - \frac{h}{\pi} \right)^{-1} - 1 \right\} d\sigma
$$

$$
+ \frac{1}{2\pi} \int_{2\epsilon}^{3\epsilon} \left\{ \left(1 - \frac{(3\epsilon - \sigma)h}{\epsilon \pi} \right)^{-1} - 1 \right\} d\sigma
$$

$$
= \frac{1}{\pi} \int_0^{\epsilon} \left\{ \left(1 - \frac{\sigma h}{\epsilon \pi} \right)^{-1} - 1 \right\} d\sigma + \frac{\epsilon h}{2\pi(\pi - h)}.
$$

Similarly we obtain the contribution from $[3\varepsilon, 6\varepsilon]$ and so the l.h.s. of (4) is equal to

$$
\frac{\varepsilon}{2\pi}\left[\frac{h}{\pi-h}-\frac{H}{\pi+H}\right]+\frac{1}{\pi}\left[\frac{\varepsilon h}{2\pi}+\frac{\varepsilon h^2}{3\pi^2}+o(\varepsilon h^3)-\frac{\varepsilon H}{2\pi}+\frac{\varepsilon H^2}{3\pi^2}+o(\varepsilon H^3)\right]
$$

and this leads to (4) after a calculation involving (3)'.

We construct an L-strip D with boundary inclination zero at $\sigma = +\infty$ which is symmetric about $\tau = 0$, i.e., a strip-like domain D with differentiable width $\theta(\sigma)$ for which

$$
\frac{\theta(\sigma_2)-\theta(\sigma_1)}{\sigma_2-\sigma_1}\to 0
$$

as $\sigma_1, \sigma_2 \rightarrow +\infty$ simultaneously. Take two sequences $\{\varepsilon_n\}_{n=1}^{\infty}$, $\{h_n\}_{n=1}^{\infty}$ of positive numbers which tend to zero in such a way that

(5)
$$
h_n \varepsilon_n^{-1} \to 0 \quad (n \to \infty).
$$

Let $\{\sigma_n\}_{n=1}^{\infty}$ be a sequence of numbers tending to $+\infty$ for which $\sigma_1 > 0$, $\sigma_{n+1} > \sigma_n + 6\varepsilon_n$ (all n). We define $\theta(\sigma)$ to be equal to 2π if

$$
\sigma \notin \cup_{n=1}^{\infty} (\sigma_n, \sigma_n + 6\varepsilon_n).
$$

For other values of σ we set

$$
\theta(\sigma) = \begin{cases}\n2\pi - 2(\sigma - \sigma_n)h_n \varepsilon_n^{-1} & \sigma_n & \leq \sigma \leq \sigma_n + \varepsilon_n, \\
2\pi - 2h_n & \sigma_n + \varepsilon_n & \leq \sigma \leq \sigma_n + 2\varepsilon_n, \\
2\pi - 2(\sigma_n + 3\varepsilon_n - \sigma)h_n \varepsilon_n^{-1} & \sigma_n + 2\varepsilon_n & \leq \sigma \leq \sigma_n + 3\varepsilon_n, \\
2\pi + 2(\sigma - \sigma_n - 3\varepsilon_n)H_n \varepsilon_n^{-1} & \sigma_n + 3\varepsilon_n & \leq \sigma \leq \sigma_n + 4\varepsilon_n, \\
2\pi + 2H_n & \sigma_n + 4\varepsilon_n & \leq \sigma \leq \sigma_n + 5\varepsilon_n, \\
2\pi + 2(\sigma_n + 6\varepsilon_n - \sigma)H_n \varepsilon_n^{-1} & \sigma_n + 5\varepsilon_n & \leq \sigma \leq \sigma_n + 6\varepsilon_n,\n\end{cases}
$$

where $H_n = h_n e^{-3k\epsilon_n}$.

Because of (5), the domain D in the $s = \sigma + i\tau$ plane defined by $|\tau| < \frac{1}{2}\theta(\sigma)$ is an L-strip with boundary inclination zero at $\sigma = +\infty$.

Let g be the function regular in $|z| < 1$ and having normalization (1)^t for which the principal branch of log g maps $|z| < 1$ cut along $(-1, 0]$ onto D so that (0, 1) in $|z| < 1$ is mapped onto $\tau = 0$ in D. Property (3) and the definition of θ ensure that g is a typically real k-dimensionally mean univalent function in $|z|$ < 1. Further, (4) shows that

(6)
$$
\int_0^{\sigma'} \frac{d\sigma}{\theta(\sigma)} - \int_0^{\sigma'} \frac{d\sigma}{2\pi}
$$

converges as $\sigma' \rightarrow +\infty$, provided (5) holds and also

(7)
$$
\sum_{n=1}^{\infty} \varepsilon_n^2 h_n < \infty.
$$

An application of Warschawski's first inequality ([4], p. 280) to the map of D onto Σ which takes the positive real axis onto itself yields

(8)
$$
\log \frac{x}{(1-x)^2} \leq 2\pi \int_{\sigma_0}^{\log g(x)} \frac{d\sigma}{\theta(\sigma)} + \frac{2\pi}{12} \int_{\sigma_0}^{\log g(x)} \frac{(\theta'(\sigma))^2}{\theta(\sigma)} d\sigma + K,
$$

where $0 < x < 1$, σ_0 is fixed and K is a constant depending on σ_0 and D. If we make

$$
(9) \qquad \qquad \sum_{n=1}^{\infty} h_{n\epsilon}^2 n^{-1} < \infty,
$$

then

$$
\int^{\infty} \frac{(\theta'(\sigma))^2}{\theta(\sigma)} d\sigma < \infty,
$$

and so (9), (6) when substituted into (8) produce

$$
(1-x)^2g(x) > \beta > 0
$$

for some constant β independent of x. Thus, if we satisfy (5), (7), (9), g will be a κ -dimensionally mean univalent function in $|z|$ < 1 of maximal growth along arg $z = 0$.

The area of $\Sigma \setminus (\Sigma \cap D)$ will be infinite if

$$
(10) \qquad \qquad \sum_{n=1}^{\infty} \varepsilon_n h_n = +\infty.
$$

^{\dagger} To ensure that $g'(0) = 1$ a horizontal translation of D may be needed. We suppose the sequence $\{\sigma_n\}$ has been suitably modified.

The choice $h_n = \varepsilon_n^3$, $\varepsilon_n = n^{-1/4}$ satisfies (5), (7), (9), (10) and completes the construction for $\kappa > -1$. When $\kappa = -1$ any example with $\kappa > -1$ will suffice.

REFERENCES

I. James A, Jenkins and K6taro Oikawa, *A remark on p-valent functions,* J. Austral. Math. Soc. 12 (1971), 397-404.

2. B. G. Eke, *The asymptotic behaviour of a really mean valent functions,* J. Analyse Math. 20 (1967), 147-212.

3. W. K. Hayman, *Multivalent Functions,* Cambridge, 1958.

4. S. E. Warschawski, *On conformal mapping of infinite strips,* Trans. Amer. Math. Soc. 51 (1942), 280-335.

DEPARTMENT OF PURE MATHEMATICS

THE UNIVERSITY OF SHEFFIELD ENGLAND