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TYPICALLY REAL MEAN UNIVALENT
FUNCTIONS OF LARGE GROWTH

BY
B. G. EKE

ABSTRACT

Typically real normalized x-dimensionally mean univalent functions f on
lz| <1 are considered for which

limsup{(1 — r)* max |[f(re®){}>0.
rt1 05052
Let s = log f(z) for z in the unit disc cut along (- 1,0]. A theorem is proved

concerning the area of the Riemann surface over the s-plane which disting-
uishes the two cases — 1=k < +o and k = +oo.

1. We consider those functions f regular in |z|< 1 which have develop-
ments

) z+ a2’ + a2’ + -

about z =0. Denote by n(w) the sum of the multiplicities of the zeros of
f(z)—w in |z| <1 and by p(t) the integral mean of n(w) around |w|=1t. We
shall suppose that f is k-dimensionally mean univalent, i.e. for some «,— 1=
Kk = 4+, and all R >0 we have

2) fk(p(t)— 1ye<dt 0.

The cases k = +%, +1, — 1 correspond to circumferentially (i.e. p(t) =1 for
all t > 0), areally, logarithmically mean univalent functions, respectively.
The function f is said to be of maximal growth if

a = lim sup {(1 —r) max lf(re“’)l} >0.
r ot oses2m

Then, provided «> -1, it is known that there is ¢ such that
(—r)|f(re’®)|—a(r 1 1) ([1], Theorem 2). We shall assume throughout that
6 =0.
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Let X be the strip | 7| < 7 in the s = ¢ + it plane and let D be the Riemann
surface over the s-plane which is the image of |z| < 1 cut along (— 1, 0] under
s = log f(z) = o(z) + it(z), the principal branch of the logarithm being taken.
(Note: (1),(2) imply that f is non-zero on 0<|z|<1.) Suppose D is the
projection of D onto the s-plane.

THEOREM. Let f be a typically real x-dimensionally mean univalent function
of maximal growth. Then, for fixed k, the area of S\ (2 N D) is finite for each
such function f if and only if k = + .

2. In this section we assume « = + = and show the area of S\ (3 N D) is
finite. Using (2], Lemma 4 we have that

J'explo(”) {Rp (R)}""dR +2log(1 - x)

Ro

tends to a finite limit as x 1 1, where R, is a fixed positive number. The
hypotheses of [2], Lemma 4 are satisfied, as a discussion analogous to that on
[2], p. 153 shows. The maximal growth hypothesis is

og(x)+2log(1-x)—=loga (x11),

and so

explo(x)] l _ p(R)
——-=dR
| R

tends to a finite limit as x T 1. Since f is of maximal growth, we know that
liminfr .. p(R)=1 ([2], p. 182), and as p(R) =1 for all R, we deduce that

f: R™(1- p(R))dR

is convergent and this shows that the area of S\ (S N D) over Re(s)>log R,is
finite. By the i:-Theorem for circumferentially mean univalent functions ([3],
Theorem 5.3), we see that TN D coincides with = in Re(s) < —log4. Theresult
follows and shows incidentally that the area of D\CN D) is also finite.

3. To complete the proof of the theorem we take « finite and construct a
k-dimensionally mean univalent function of maximal growth for which the area
of SNCEnN Ij) is infinite. If we write 6(og)=2mp(e°) and k =« +1 in the
valency condition (2), we obtain

) flom(()(a) —2m)e*do =0 (allR >0).
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We will modify the strip X by occasional small contractions and expansions
of the width. We start with one perturbation of 43 and perform the relevant
computations. Let 8(o) be the width of a strip-like domain D which we take to
be symmetric about 7 =0. We suppose k >0 and that ¢ h, H are positive.
Define 8 on [0,6¢] by

(27 —20he ™! 0 SEog=¢

27 —2h £ =0 =2

27 —2(3e —o)he™’ 2e =0 =3¢,
6(o) = 1

27 +2(0 —3¢)He ™! 3e =0 =4,

27 +2H 4 = 0 = 5S¢,

27 +2(6e —o)He™' Se = 0 =6¢.

We shall choose H = H(g, h, k) so that

.73
Q) f (8(o)—2m)e*do =0.
[1]
Now
6z 4 S5e
f (8(0) —2m)e*do = 2H£_'f (o0 —3¢)e*do + ZHI e“do
3¢ 3¢ 4¢
6e
+2Hg ! f (6e — ) e*do
kY3
3 2e
=2Hs"e”‘f o-e'“’do-+2He"“f e do
o €
3¢
+2He e f Be —o)e*do
3e
= - h"'He""f (o) —-2m)e*do.
0
Taking
(3)/ H — he_]kf,

we satisfy (3).
Next we establish

4 o 1 o
L 0(0)‘5}‘1"—3” hke*(1 + 0(1)),
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as g, h | 0 with h = 0(¢g). The contribution to the Lh.s. of (4) from [0, 3¢] is
s -1 -1
L {(1—"—") }do-+—f 1—ﬁ> —1}da
27 Jo €m T
3e _ -1
e (-2 o
2m )l emw
1 ah -! ch
A 0-5) e
Similarly we obtain the contribution from [3¢,6¢] and so the L.h.s. of (4) is equal

£ h H eh ¢h? z;H2
21r[ h_1r+H]+ [27r+3 toleh) -3 43, +"(‘"H)}

and this leads to (4) after a calculation involving (3)'.
We construct an L-strip D with boundary inclination zero at o = + » which

is symmetric about 7 =0, i.e., a strip-like domain D with differentiable width
8 (o) for which

to

6(02) — 6(a))

0, 0y

-0

as o,,0,— + o simultaneously. Take two sequences {, }n-1, {h.}n-1 Of positive
numbers which tend to zero in such a way that

3 h.e.'>0 (n—>x).

Let {o.}n-, be a sequence of numbers tending to + for which o, >0,
One1 > 0, + 6, (all n). We define 8(o) to be equal to 27 if

o€ Un.i (0., 0. +68,).

For other values of o we set

27 =20 — 0, )hae ;! O S0 =0.+¢€n

27 —2h, Ot en =0=0,+2¢,,

27— 20, + 36, — 0)h,e! o, 126, =0 =0,+3¢,,
8(o) = 1

27+ 2(0 — 0, — 3¢, )H, e} o, +3e, S0 =0,+4¢,,

27 +2H, O, +4e, =0 =0, 1+ 5S¢,

27+ 2o, + 6, — a)H,e,! o, +5¢, =0 =0, 6¢,,

where H, = h,e **~.
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Because of (5), the domain D in the s = o + ir plane defined by 7| <;8(a) is
an L-strip with boundary inclination zero at o = + x.

Let g be the function regular in |z| <1 and having normalization (1)" for
which the principal branch of log g maps [z |< 1 cut along (—1,0] onto D so
that (0, 1) in | z| < 1 is mapped onto 7 = 0 in D. Property (3) and the definition of
0 ensure that g is a typically real k-dimensionally mean univalent function in
|z| < 1. Further, (4) shows that

< da * do

(6) om_oz‘ﬂ

converges as o' — + x, provided (5) holds and also

) D enhn <.

n=1

An application of Warschawski’s first inequality ([4], p. 280) to the map of D
onto X which takes the positive real axis onto itself yields

logg(x) d(T 27_7 lou(x)(o (0))2
Z”L b 12)., 0@

8) log ———do + K,

X =<
(1-x)*~

where 0 < x < 1,0, is fixed and K is a constant depending on o, and D. If we
make

)] i 2 -1 o
then
" (8' (o))
8(0) do <

and so (9), (6) when substituted into (8) produce
(1-x)g(x)>B>0

for some constant B independent of x. Thus, if we satisfy (5),(7),(9), g will be a
k-dimensionally mean univalent function in |z | <1 of maximal growth along
arg z =0.

The area of 2\ (2 N D) will be infinite if

(10) S eh = 4o

' To ensure that g’(0) =1 a horizontal translation of D may be needed. We suppose the
sequence {o,} has been suitably modified.
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The choice h. = ¢e2, &, = n~"* satisfies (5), (7), (9), (10) and completes the
construction for k > — 1. When x = — 1 any example with k > — 1 will suffice.
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